Antiviral Phytoremediation for Sustainable Wastewater Treatment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Enteric viruses in wastewater remain a persistent public health threat. Conventional treatments often achieve only modest viral log10 reductions and can generate toxic disinfection byproducts, but high-energy advanced processes are often unaffordable. Antiviral phytoremediation, which involves virus removal mediated by plants and their rhizosphere microbiota, offers a low-cost, low-energy alternative; however, it has scarcely been studied. A bibliometric analysis of ~23,000 wastewater treatment studies (1976–2025) identified only 30 virus-targeted records within plant-based treatment branches, representing ~0.13% of the total corpus. This critical review structures antiviral phytoremediation into a four-barrier framework: (i) sorption/filtration, (ii) rhizosphere-mediated inactivation, (iii) plant internalization, and (iv) intracellular degradation. Pilot and full-scale studies provide strong support for the first two barriers, whereas evidence for internalization and intracellular degradation is limited, mainly laboratory-based, and often inferred from molecular rather than infectivity assays. Standalone constructed wetlands typically achieve ~1–3 log10 virus reductions, but hybrid configurations that combine wetlands with complementary processes achieve ~3–7 log10 reductions, with performance varying between enveloped and non-enveloped viruses and across climates. This review distills design principles for cost-effective hybrid systems and identifies methodological and governance priorities, positioning rigorously designed phytoremediation as a scalable part of climate- and pandemic-resilient wastewater infrastructure.

Article activity feed