Hydrophobic Natural Deep Eutectic Solvents for Extraction of Bioactive Compounds: Multiscale Characterization, Quantum Simulations, and Molecular Interaction Studies with Cry j 1 and Amb a 1 Allergens
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study explores the synthesis, characterization, and extraction efficiency of hydrophobic natural deep eutectic solvents (NADESs), along with the allergen-modulating potential of extracted bioactive compounds. Six NADESs were synthesized using binary combinations of camphor, thymol, eugenol, and menthol (1:1 molar ratio) and characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis and differential thermal analysis (TGA/DTA), density functional theory (DFT), and molecular dynamics simulations (MD simulations). Bioactive compounds were extracted from Thujopsis dolabrata wood biomass via ultrasonic-assisted extraction and analyzed using gas chromatography–mass spectrometry (GC–MS). The total essential oil yield, estimated semiquantitatively by summing the peak areas of key terpenoid compounds, ranged from 1.91% to 7.90% across different NADES systems, indicating their varied extraction capacities. Molecular docking was performed to assess their allergen-modulating interactions with Amb a 1 and Cry j 1. All NADESs exhibited single-stage decomposition (110–125 °C) except camphor–menthol, which recrystallized. FTIR and simulations confirmed strong hydrogen bonding in eugenol-based NADESs, particularly menthol–eugenol. Extraction identified 47 bioactive compounds, with 4,5α-Epoxy-3-methoxy-17-methyl-7α-(4-phenyl-1,3-butadienyl)-6β,7β-(oxymethylene) morphinan as the most abundant (9.31–11.16%). It exhibited the highest binding affinity (Cry j 1: −8.60 kcal/mol, Amb a 1: −7.40 kcal/mol) and lowest inhibition concentration (Cry j 1: 0.49 µM, Amb a 1: 3.74 µM), suggesting strong allergen-modulating potential. Hydrophobic interactions and hydrogen bonding drove protein–ligand binding. These findings highlight NADESs as effective, sustainable solvents for extracting bioactive compounds with allergen-modulating potential.