Development and Long–Term Operation of a Three-Dimensional Displacement Monitoring System for Nuclear Power Plant Piping
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Ensuring the structural integrity of high-energy piping systems is a critical requirement for the safe operation of nuclear power plants. This paper presents the design, implementation, and three-year operational validation of a three-dimensional displacement monitoring system installed on the steam generator blowdown pipeline of the Krško Nuclear Power Plant. The system was developed to verify that the plant’s operating procedures will not induce excessive dynamic displacements during operation. The measurement system configuration utilizes three non-collinear inductive displacement transducers from Hottinger Baldwin Messtechnik (HBM WA/500 mm-L), mounted via miniature universal joints to a reference plate and to a defined observation point on the pipeline. This arrangement enables the real-time monitoring of X, Y, and Z displacements within a spherical measurement volume of approximately 0.5 m. Data are continuously acquired via an HBM QuantumX MX840B amplifier and processed using CATMAN Easy-AP software through a fiber-optic communication link between the containment and control areas. The system has operated continuously for more than three years under elevated temperature and radiation conditions, confirming its reliability and robustness. The correlation of the measured displacements with process parameters such as the flow rate, pressure, and temperature provides valuable insight into transient events and contributes to predictive maintenance strategies. The presented methodology demonstrates a practical and radiation-tolerant approach for the continuous structural monitoring of nuclear plant piping systems.