Radio Frequency Signal Recognition of Unmanned Aerial Vehicle Based on Complex-Valued Convolutional Neural Network
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The rapid development of unmanned aerial vehicle (UAV) technology necessitates reliable recognition methods. Radio frequency (RF)-based recognition is promising, but conventional real-valued CNNs (RV-CNNs) typically discard phase information from RF spectrograms, leading to degraded performance under low-signal-to-noise ratio (SNR) conditions. To address this, this paper proposes a complex-valued CNN (CV-CNN) that operates on a constructed complex representation, where the real part is the logarithmic power spectral density (PSD) and the imaginary part is derived from Sobel edge detection. This enables genuine complex convolutions that fuse magnitude and structural cues, enhancing noise resilience. As complex-valued networks are known to be sensitive to architectural choices, we conduct comprehensive ablation experiments to investigate the impact of key hyperparameters on model performance, revealing critical stability constraints (e.g., performance collapse beyond 4–5 network depth). Evaluated on the 25-class DroneRFa dataset, the proposed model achieves 100.00% accuracy under noise-free conditions. Crucially, it demonstrates significantly superior robustness in low-SNR regimes: at −20 dB SNR, it attains 15.58% accuracy, over seven times higher than a dual-channel RV-CNN (2.20%) with identical inputs; at −15 dB, it reaches 45.86% versus 14.03%. These results demonstrate that the CV-CNN exhibits potentially superior robustness and interference resistance in comparison to its real-valued counterpart, maintaining high recognition accuracy even under low-SNR conditions.