Sensor Fusion-Based Machine Learning Algorithms for Meteorological Conditions Nowcasting in Port Scenarios
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Modern port operations face increasing challenges from rapidly changing weather and environmental conditions, requiring accurate short-term forecasting to support safe and efficient maritime activities. This study presents a sensor fusion-based machine learning framework for real-time multi-target nowcasting of wind gust speed, sustained wind speed, and wind direction using heterogeneous data collected at the Port of Livorno from February to November 2025. Using an IoT architecture compliant with the oneM2M standard and deployed at the Port of Livorno, CNIT integrated heterogeneous data from environmental sensors (meteorological stations, anemometers) and vessel-mounted LiDAR systems through feature-level fusion to enhance situational awareness, with gust speed treated as the primary safety-critical variable due to its substantial impact on berthing and crane operations. In addition, a comparative performance analysis of Random Forest, XGBoost, LSTM, Temporal Convolutional Network, Ensemble Neural Network, Transformer models, and a Kalman filter was performed. The results show that XGBoost consistently achieved the highest accuracy across all targets, with near-perfect performance in both single-split testing (R2 ≈ 0.999) and five-fold cross-validation (mean R2 = 0.9976). Ensemble models exhibited greater robustness than deep learning approaches. The proposed multi-target fusion framework demonstrates strong potential for real-time deployment in Maritime Autonomous Surface Ship (MASS) systems and port decision-support platforms, enabling safer manoeuvring and operational continuity under rapidly varying environmental conditions.