SAM2-Dehaze: Fusing High-Quality Semantic Priors with Convolutions for Single-Image Dehazing

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Single-image dehazing suffers from severe information loss and the under-constraint problem. The lack of high-quality robust priors leads to limited generalization ability of existing dehazing methods in real-world scenarios. To tackle this challenge, we propose a simple but effective single-image dehazing network by fusing high-quality semantic priors extracted from Segment Anything Model 2 (SAM2) with different types of advanced convolutions, abbreviated SAM2-Dehaze, which follows the U-Net architecture and consists of five stages. Specifically, we first employ the superior semantic perception and cross-domain generalization capabilities of SAM2 to generate accurate structural semantic masks. Then, a dual-branch Semantic Prior Fusion Block is designed to enable deep collaboration between the structural semantic masks and hazy image features at each stage of the U-Net. Furthermore, to avoid the drawbacks of feature redundancy and neglect of high-frequency information in traditional convolution, we have designed a novel parallel detail-enhanced and compression convolution that combines the advantages of standard convolution, difference convolution, and reconstruction convolution to replace the traditional convolution at each stage of the U-Net. Finally, a Semantic Alignment Block is incorporated into the post-processing phase to ensure semantic consistency and visual naturalness in the final dehazed result. Extensive quantitative and qualitative experiments demonstrate that SAM2-Dehaze outperforms existing dehazing methods on several synthetic and real-world foggy-image benchmarks, and exhibits excellent generalization ability.

Article activity feed