Simulation of Chirped FBG and EFPI-Based EC-PCF Sensor for Multi-Parameter Monitoring in Lithium Ion Batteries

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). The proposed design synergistically combines a chirped fiber Bragg grating (FBG) and an extrinsic Fabry–Pérot interferometer (EFPI) on a multiplexed platform for the multifunctional sensing of refractive index (RI), temperature, strain, and pressure (via strain coupling) within LIBs. By matching the RI of the PCF cladding to the battery electrolyte using ethylene carbonate, the design maximizes light–matter interaction for exceptional RI sensitivity, while the cascaded EFPI enhances mechanical deformation detection beyond conventional FBG arrays. The simulation framework employs the Transfer Matrix Method with Gaussian apodization to model FBG reflectivity and the Airy formula for high-fidelity EFPI spectra, incorporating critical effects like stress-induced birefringence, Transverse Electric (TE)/Transverse Magnetic (TM) polarization modes, and wavelength dispersion across the 1540–1560 nm range. Robustness against fabrication variations and environmental noise is rigorously quantified through Monte Carlo simulations with Sobol sequences, predicting temperature sensitivities of ∼12 pm/°C, strain sensitivities of ∼1.10 pm/με, and a remarkable RI sensitivity of ∼1200 nm/RIU. Validated against independent experimental data from instrumented battery cells, this model establishes a robust computational foundation for real-time battery monitoring and provides a critical design blueprint for future experimental realization and integration into advanced battery management systems.

Article activity feed