A Review of Dynamic Traffic Flow Prediction Methods for Global Energy-Efficient Route Planning
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Urbanization and traffic congestion caused by the surge in car ownership have exacerbated energy consumption and carbon emissions, and dynamic traffic flow prediction and energy-saving route planning have become the key to solving this problem. Dynamic traffic flow prediction accurately captures the spatio-temporal changes of traffic flow through advanced algorithms and models, providing prospective information for traffic management and travel decision-making. Energy-saving route planning optimizes travel routes based on prediction results, reduces the time vehicles spend on congested road sections, thereby reducing fuel consumption and exhaust emissions. However, there are still many shortcomings in the current relevant research, and the existing research is mostly isolated and applies a single model, and there is a lack of systematic comparison of the adaptability, generalization ability and fusion potential of different models in various scenarios, and the advantages of heterogeneous graph neural networks in integrating multi-source heterogeneous data in traffic have not been brought into play. This paper systematically reviews the relevant global studies from 2020 to 2025, focuses on the integration path of dynamic traffic flow prediction methods and energy-saving route planning, and reveals the advantages of LSTM, graph neural network and other models in capturing spatiotemporal features by combing the application of statistical models, machine learning, deep learning and mixed methods in traffic forecasting, and comparing their performance with RMSE, MAPE and other indicators, and points out that the potential of heterogeneous graph neural networks in multi-source heterogeneous data integration has not been fully explored. Aiming at the problem of disconnection between traffic prediction and path planning, an integrated framework is constructed, and the real-time prediction results are integrated into path algorithms such as A* and Dijkstra through multi-objective cost functions to balance distance, time and energy consumption optimization. Finally, the challenges of data quality, algorithm efficiency, and multimodal adaptation are analyzed, and the development direction of standardized evaluation platform and open source toolkit is proposed, providing theoretical support and practical path for the sustainable development of intelligent transportation systems.