Bridge Damage Identification Using Time-Varying Filtering-Based Empirical Mode Decomposition and Pre-Trained Convolutional Neural Networks
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Structural damage identification provides a theoretical foundation for the operational safety and preventive maintenance of in-service bridges. However, practical bridge health monitoring faces challenges in poor signal quality, difficulties in feature extraction, and insufficient damage classification accuracy. This study presents a bridge damage identification framework integrating time-varying filtering-based empirical mode decomposition (TVFEMD) with pre-trained convolutional neural networks (CNNs). The proposed method enhances the key frequency-domain features of signals and suppresses the interference of non-stationary noise on model training through adaptive denoising and time–frequency reconstruction. TVFEMD was demonstrated in numerical simulation experiments to have a better performance than the traditional EMD in terms of frequency separation and modal purity. Furthermore, the performances of three pre-trained CNN models were compared in damage classification tasks. The results indicate that ResNet-50 has the best optimal performance compared with the other networks, particularly exhibiting better adaptability and recognition accuracy when processing TVFEMD-denoised signals. In addition, the principal component analysis visualization results demonstrate that TVFEMD significantly improves the clustering and separability of feature data, providing clearer class boundaries and reducing feature overlap.