Energy Management Design of Dual-Motor System for Electric Vehicles Using Whale Optimization Algorithm

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Dual-motor electric vehicles enhance power performance and overall output capabilities by enabling the real-time control of the torque distribution between the front and rear wheels, thereby improving handling, stability, and safety. In addition to increased energy efficiency, a dual-motor system provides redundancy: if one motor fails, the other can still supply partial power, further enhancing driving safety. This study aimed to optimize the energy management strategies of the front- and rear-axis motors, examining the application effects of rule-based control (RBC), global grid search (GGS), and the whale optimization algorithm (WOA). A simulation platform based on MATLAB/Simulink® (R2021b, MATLAB, Natick, MA, USA) was constructed and validated through hardware-in-the-loop (HIL) testing to ensure the authenticity and reliability of the simulation results. Detailed tests and analyses of the dual-motor system were conducted under FTP-75 driving cycles. Compared to the RBC strategy, GGS and WOA achieved energy efficiency improvements of 9.1% and 8.9%, respectively, in the pure simulation, and 4.2% and 3.8%, respectively, in the HIL simulation. Compared to the pure RBC strategy, the RBC and GGS strategies incorporating regenerative braking achieved energy efficiency improvements of 26.1% and 29.4%, respectively, in the HIL simulation. Overall, GGS and WOA each present distinct advantages, with WOA emerging as a highly promising alternative energy management strategy. Future research should further explore WOA applications to enhance energy savings in real-world vehicle operations.

Article activity feed