Portable Technology to Measure and Visualize Body-Supporting Force Vector Fields in Everyday Environments

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Object-related accidents among older adults often result from inadequately designed furniture and fixtures that do not accommodate age-related changes. However, technologies for quantitatively capturing how furniture and fixtures assist the body in daily life remain limited. This study addresses this gap by introducing a portable, non-disruptive system that measures and visualizes how humans interact with environmental objects, particularly during transitional movements such as standing, turning, or reaching. The system integrates wearable force sensors, motion capture gloves, RGB-D cameras, and LiDAR-based environmental scanning to generate spatial maps of body-applied forces, overlaid onto point cloud representations of actual living environments. Through home-based experiments involving 13 older adults aged 69–86 across nine households, the system effectively identified object-specific support interactions with specific furniture (e.g., doorframes, shelves) and enabled a three-dimensional comparative analysis across different spaces, including living rooms, entryways, and bedrooms. The visualization captured essential spatial features—such as contact height and positional context—without altering the existing environment. This study presents a novel methodology for evaluating life environments from a life-centric perspective and offers insights for the inclusive design of everyday objects and spaces to support safe and independent aging in place.

Article activity feed