Vega: LLM-Driven Intelligent Chatbot Platform for Internet of Things Control and Development

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Large language models (LLMs) have revolutionized natural language processing (NLP), yet their potential in Internet of Things (IoT) and embedded systems (ESys) applications remains largely unexplored. Traditional IoT interfaces often require specialized knowledge, creating barriers for non-technical users. We present Vega, a modular system that leverages LLMs to enable intuitive, natural language control and interrogation of IoT devices, specifically, a Raspberry Pi (RPi) connected to various sensors, actuators, and devices. Our solution comprises three key components: a physical circuit with input and output devices used to showcase the LLM’s ability to interact with hardware, an RPi integrating a control server, and a web application integrating LLM logic. Users interact with the system through natural language, which the LLM interprets to remotely call appropriate commands for the RPi. The RPi executes these instructions on the physically connected circuit, with outcomes communicated back to the user via LLM-generated responses. The system’s performance is empirically evaluated using a range of task complexities and user scenarios, demonstrating its ability to handle complex and conditional logic without additional coding on the RPi, reducing the need for extensive programming on IoT devices. We showcase the system’s real-world applicability through physical circuit implementation while providing insights into its limitations and potential scalability. Our findings reveal that LLM-driven IoT control can effectively bridge the gap between complex device functionality and user-friendly interaction, and also opens new avenues for creative and intelligent IoT applications. This research offers insights into the design and implementation of LLM-integrated IoT interfaces.

Article activity feed