TU-DAT: A Computer Vision Dataset on Road Traffic Anomalies

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper introduces TU-DAT, a novel, freely downloadable computer vision dataset for analyzing traffic accidents using roadside cameras. TU-DAT addresses the lack of public datasets for training and evaluating models focused on automatic detection and prediction of road anomalies. It comprises approximately 280 real-world and simulated videos, collected from traffic CCTV footage, news reports, and high-fidelity simulations generated using BeamNG.drive. This hybrid composition captures aggressive driving behaviors—such as tailgating, weaving, and speeding—under diverse environmental conditions. It includes spatiotemporal annotations and structured metadata such as vehicle trajectories, collision types, and road conditions. These features enable robust model training for anomaly detection, spatial reasoning, and vision–language model (VLM) enhancement. TU-DAT has already been utilized in experiments demonstrating improved performance of hybrid deep learning- and logic-based reasoning frameworks, validating its practical utility for real-time traffic monitoring, autonomous vehicle safety, and driver behavior analysis. The dataset serves as a valuable resource for researchers, engineers, and policymakers aiming to develop intelligent transportation systems that proactively reduce road accidents.

Article activity feed