Multi-User MIMO Downlink Precoding with Dynamic User Selection for Limited Feedback

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In modern (5G) and future Multi-User (MU) wireless communication systems Beyond 5G (B5G) using Multiple-Input Multiple-Output (MIMO) technology, base stations with a large number of antennas communicate with many mobile stations. This technology is becoming especially relevant in modern multi-user wireless sensor networks in various application scenarios. The problem of organizing an MU mode on the downlink has arisen, which can be solved by precoding at the Base Station (BS) without using additional channel frequency–time resources. In order to utilize an efficient precoding algorithm at the base station, full Channel State Information (CSI) is needed for each mobile station. Transmitting this information for massive MIMO systems normally requires the allocation of high-speed channel resources for the feedback. With limited feedback, reduced information (partial CSI) is used, for example, the codeword from the codebook that is closest to the estimated channel vector (or matrix). Incomplete (or inaccurate) CSI causes interference from the signals, transmitted to neighboring mobile stations, that ultimately results in a decrease in the number of active users served. In this paper, we propose a new downlink precoding approach for MU-MIMO systems that also uses codebooks to reduce the information transmitted over a feedback channel. A key aspect of the proposed approach, in contrast to the existing ones, is the transmission of new, uncorrelated information in each cycle, which allows for accumulating CSI with higher accuracy without increasing the feedback overhead. The proposed approach is most effective in systems with dynamic user selection. In such systems, increasing the accuracy of CSI leads to an increase in the number of active users served, which after a few cycles, can reach a maximum value determined by the number of transmit antennas at the BS side. This approach appears to be promising for addressing the challenges associated with current and future massive MIMO systems, as evidenced by our statistical simulation results. Various methods for extracting and transmitting such uncorrelated information over a feedback channel are considered. In many known publications, the precoder, codebooks, CSI estimation methods and other aspects of CSI transmission over a feedback channel are separately optimized, but a comprehensive approach to jointly solving these problems has not yet been developed. In our paper, we propose to fill this gap by combining a new approach of precoding and CSI estimation with CSI accumulation and transmission over a feedback channel.

Article activity feed