Improving Factuality by Contrastive Decoding with Factual and Hallucination Prompts

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Large language models have demonstrated impressive capabilities in many domains. But they sometimes generate irrelevant or nonsensical text, or produce outputs that deviate from the provided input, an occurrence commonly referred to as hallucination. To mitigate this issue, we introduce a novel decoding method that incorporates both factual and hallucination prompts (DFHP). It applies contrastive decoding to highlight the disparity in output probabilities between factual prompts and hallucination prompts. Experiments on both multiple-choice and text generation tasks show that our approach significantly improves factual accuracy of large language models without additional training. On the TruthfulQA dataset, the DFHP method significantly improves factual accuracy of the LLaMA model, with an average improvement of 6.4% for the 7B, 13B, 30B, and 65B versions. Its high accuracy in factuality makes it an ideal choice for high reliability tasks like medical diagnosis and legal cases.

Article activity feed