Scalable Hyperspectral Enhancement via Patch-Wise Sparse Residual Learning: Insights from Super-Resolved EnMAP Data

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational complexity, and limited training data, particularly for new-generation sensors with unique noise patterns. In this contribution, we propose a novel parallel patch-wise sparse residual learning (P2SR) algorithm for resolution enhancement based on fusion of HSI and MSI. The proposed method uses multi-decomposition techniques (i.e., Independent component analysis, Non-negative matrix factorization, and 3D wavelet transforms) to extract spatial and spectral features to form a sparse dictionary. The spectral and spatial characteristics of the scene encoded in the dictionary enable reconstruction through a first-order optimization algorithm to ensure an efficient sparse representation. The final spatially enhanced HSI is reconstructed by combining the learned features from low-resolution HSI and applying an MSI-regulated guided filter to enhance spatial fidelity while minimizing artifacts. P2SR is deployable on a high-performance computing (HPC) system with parallel processing, ensuring scalability and computational efficiency for large HSI datasets. Extensive evaluations on three diverse study sites demonstrate that P2SR consistently outperforms traditional and state-of-the-art (SOA) methods in both quantitative metrics and qualitative spatial assessments. Specifically, P2SR achieved the best average PSNR (25.2100) and SAM (12.4542) scores, indicating superior spatio-spectral reconstruction contributing to sharper spatial features, reduced mixed pixels, and enhanced geological features. P2SR also achieved the best average ERGAS (8.9295) and Q2n (0.5156), which suggests better overall fidelity across all bands and perceptual accuracy with the least spectral distortions. Importantly, we show that P2SR preserves critical spectral signatures, such as Fe2+ absorption, and improves the detection of fine-scale environmental and geological structures. P2SR’s ability to maintain spectral fidelity while enhancing spatial detail makes it a powerful tool for high-precision remote sensing applications, including mineral mapping, land-use analysis, and environmental monitoring.

Article activity feed