See the Unseen: Grid-Wise Drivable Area Detection Dataset and Network Using LiDAR
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Drivable Area (DA) detection is crucial for autonomous driving. Camera-based methods rely heavily on illumination conditions and often fail to capture accurate 3D information, while LiDAR-based methods offer accurate 3D data and are less susceptible to illumination conditions. However, existing LiDAR-based methods focus on point-wise detection, so are prone to occlusion and limited by point cloud sparsity, which leads to decreased performance in motion planning and localization. We propose Argoverse-grid, a grid-wise DA detection dataset derived from Argoverse 1, comprising over 20K frames with fine-grained BEV DA labels across various scenarios. We also introduce Grid-DATrNet, a first grid-wise DA detection model utilizing global attention through transformers. Our experiments demonstrate the superiority of Grid-DATrNet over various methods, including both LiDAR and camera-based approaches, in detecting grid-wise DA on the proposed Argoverse-grid dataset. Grid-DATrNet achieves state-of-the-art results with an accuracy of 93.28% and an F1-score of 0.8328. We show that Grid-DATrNet can detect grids even in occluded and unmeasured areas by leveraging contextual and semantic information through global attention, unlike CNN-based DA detection methods. The preprocessing code for Argoverse-grid, experiment code, Grid-DATrNet implementation, and result visualization code are available at AVE Laboratory official git hub.