Fluorescence and Phosphorescence Assay of β-D-Glucans from Basidiomycete Medicinal Mushrooms

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Basidiomycete mushrooms contain complex β-D-glucans which act as immunomodulator, immune stimulants and anti-cancer agents, which can be either free or bound to proteins. The present report consists of a novel and intrinsic synchronous fluorescence and phosphorescence assay method for β-D-glucans. This analytical technique was carried out by a spectrofluorometer in the range of 250 to 750 nm with a Δλ range of 5–30 nm which exhibited peaks at 492, 540 and 550 nm by using β-D-glucan from Euglena gracilis as a standard. A micro and high-throughput method based on a microplate fluorescence reader was devised with a excitation and emissions λ of 420 nm and 528 nm, respectively. This assay method revealed some advantages over the reported colorimetric methods, since it is a non-destructive assay method of β-D-glucans in samples with a linearity range of 0–14 μg/well, correlation coefficient (r2) of 0.9961, LOD of 0.973 μg/well, LOQ of 2.919 μg/well, greater sensitivity, fast, a high-throughput method and very economical. β-D-glucans of several mushrooms (i.e., Poria coccus, Auricularia auricula, Ganoderma lucidium, Pleurotus ostreatus, Cordyceps sinensis, Agaricus blazei, Polyporus umbellatus, Inonotus obliquee) were purified by using a sequence of various solvent extractions, quantified by either spectrofluorometer or fluorescence microtiter plate reader assay and compared with Congo red assay method. Three-dimensional spectra measurements were carried out on β-D-glucans from commercial sources and medicinal mushroom strains. FTIR spectroscopy was selected to investigate the structural properties of β-D-glucans in these mushroom samples. Therefore, the present assay method is simple, fast, cheap and non-destructive for β-D-glucans from medicinal mushrooms as well as from commercial sources.

Article activity feed