Techno-Economic Analysis of Hydrogen Transport via Truck Using Liquid Organic Hydrogen Carriers
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study presents a techno-economic analysis of hydrogen transportation via liquid organic hydrogen carriers by road, comparing this option with compressed hydrogen (350 bar) and liquefied hydrogen. The analysis includes the simulation of hydrogenation and dehydrogenation reactors for the dibenzyltoluene/perhydro-dibenzyltoluene system using ASPEN Plus, along with a cost assessment of compression, liquefaction, and trucking. A sensitivity analysis is also carried out, evaluating hydrogen transport at varying daily demand levels (1, 2, and 4 t/d) and transport distances (50, 150, and 300 km), with varying electricity prices and capital expenditures for hydrogenation and dehydrogenation units. Results indicate that compressed hydrogen is the most cost-effective solution for short distances up to 150 km, with a levelized cost of transported hydrogen ranging from 1.10 to 1.61 EUR/kg. However, LOHC technology becomes more competitive at longer distances, with LCOTH values between 1.49 and 1.90 EUR/kg at 300 km across all demand levels. Liquefied hydrogen remains the least competitive option, reaching costs up to 5.35 EUR/kg, although it requires fewer annual trips due to higher trailer capacity. Notably, at 150 km, LOHC transport becomes more cost-effective than compressed hydrogen when electricity prices exceed 0.22 EUR/kWh or when the capital costs for hydrogenation and dehydrogenation units are minimized. From an environmental perspective, switching from compressed to liquid hydrogen carriers significantly reduces CO2 emissions—by 56% for LOHCs and 78% for liquid hydrogen—highlighting the potential of these technologies to support the decarbonization of hydrogen logistics.