Selective Complexation and Leaching of Cobalt Using Histidine in an Alkaline Medium
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Considering the issues of significant ammonia volatilization loss and toxic gas emission associated with the conventional ammonia leaching method used in the resource utilization of cobalt-rich alloy slag, a novel approach involving selective complexation leaching of cobalt in an alkaline histidine solution has been proposed. Under conditions of 35 °C temperature, a molar ratio of histidine to cobalt of 1.5, pH of 8, a leaching period of 12 h, and a stirring speed of 300 rpm, the cobalt leaching rate from cobalt-rich alloy slag exceeds 95%. In contrast, the leaching rates for impurity metals such as iron, lead, and copper remain below 3%, demonstrating outstanding leaching selectivity. Leaching kinetics calculations indicate that the rate-controlling step is chemical reaction control, with an apparent activation energy of 64.32 kJ/mol. Through the use of FTIR and XPS characterization techniques, it has been confirmed that histidine molecules form a stable complex with cobalt ions via the dual coordination of the carboxyl (COO−) and amino (-NH2) groups. This distinctive bifunctional synergistic coordination mechanism markedly enhances leaching selectivity and reaction efficiency.