Phytoremediaton Strategies for Co-Contaminated Soils: Overcoming Challenges, Enhancing Efficiency, and Exploring Future Advancements and Innovations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soils co-contaminated with petroleum hydrocarbons (PHs) and heavy metals pose significant challenges, such as reduced bioavailability of pollutants, toxic effects on soil microorganisms, and unpredictable chemical interactions. These complex interactions hinder effective remediation. Phytoremediation, which utilizes plant and microbial processes, offers a sustainable and eco-friendly approach. However, its effectiveness is often constrained by the intricate interplay among PHs, heavy metals, and soil components, which complicates pollutant degradation and microbial activity. This review explores the interactions between enhancement strategies, including soil amendments, plant growth-promoting bacteria (PGPB), and genetic engineering, which can synergistically enhance pollutant degradation and remediation efficiency. Key challenges include competition for soil adsorption sites among contaminants, microbial community disruptions, and environmental variability. Moreover, the limitations of these strategies, including their reliance on specific plant species, sensitivity to environmental variability, and the necessity for long-term monitoring, are discussed. The proposed solutions focus on integrating emerging technologies and interdisciplinary approaches to overcome these challenges and improve pollutant removal efficiency. Future advancements in interdisciplinary approaches, integrating biological techniques with technological innovations, are highlighted as key to addressing the complexities of co-contaminated environments and improving pollutant removal efficiency.

Article activity feed