Efficient Recovery of Silver and Aluminum from End-of-Life Photovoltaics: A Two-Step Leaching Approach

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Recycling solar panels is crucial to mitigating the environmental impact of the growing volume of end-of-life photovoltaic waste and to conserve valuable resources, while achieving high purity in recovered materials ensures their effective reuse in the manufacturing of new solar panels, contributing to a sustainable and circular economy. This study proposes a two-step leaching process to recover Ag and Al from the silicon fraction of EoL photovoltaics (PVs). In the first-stage laboratory scale tests, 99% Al was extracted using 5% HCl at room temperature (19 °C) for 3 h The Al was precipitated as oxide from the solution. The silicon residue was then leached with 0.5 M HNO3 at 85 °C for 2 h, extracting 99% Ag and producing Si with 99.83% purity. The silver was precipitated to produce metallic Ag with >99.9% purity. Then, 95.63% of Pb in the nitric acid effluent was removed using ion exchange resins. Further, methods to mitigate the effluent solutions were recommended and the entire process was presented in a flowsheet.

Article activity feed