Evaluating Polymer Characterization Methods to Establish a Quantitative Method of Compositional Analysis Using a Polyvinyl Alcohol (PVA)/Polyethylene Glycol (PEG)—Based Hydrogel for Biomedical Applications

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Multi-component polymer hydrogels present complex physiochemical interactions that make accurate compositional analysis challenging. This study evaluates three analytical techniques: Nuclear Magnetic Resonance (NMR), Advanced Polymer Chromatography (APC), and Thermogravimetric Analysis (TGA) to quantify polyvinyl alcohol (PVA) and polyethylene glycol (PEG) content in hybrid freeze-thaw derived PVA/PEG/PVP hydrogels. Hydrogels were synthesized using an adapted freeze–thaw method across a wide range of PVA:PEG ratios, with PVP included at 1 wt% to assess potential intermolecular effects. NMR and APC reliably quantified polymer content with low average errors of 2.77% and 2.01%, respectively, and were unaffected by phase separation or hydrogen bonding within the composite matrix. TGA enabled accurate quantification at PVA contents ≤ 62.5%, where PEG and PVA maintained distinct thermal decomposition behaviors. At higher PVA concentrations, increased hydrogen bonding and crystalline restructuring, confirmed by FTIR through shifts near 1140 cm−1 and significant changes in the -OH region, altered thermal profiles and reduced TGA accuracy. Together, these findings establish APC as a high-throughput alternative to NMR for multi-component polymer analysis and outline critical thermal and structural thresholds that influence TGA-based quantification. This work provides a framework for characterizing complex polymer networks in biomedical hydrogel systems.

Article activity feed