Development of a Biodegradable Patch Based on Polysaccharides

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transdermal hydrogel films were fabricated from gellan gum, chitosan, and agar–agar, employing glutaraldehyde as a covalent crosslinker. The obtained formulation exhibited structural stability, pH-sensitive swelling, and high biocompatibility without the participation of metal ions. FTIR spectra showed the emergence of a characteristic imine (C=N) vibration near 1630 cm−1, confirming covalent network formation through Schiff-base reactions. SEM imaging revealed a homogeneous porous architecture (45–120 μm) that enhances moisture absorption and molecular diffusion. The swelling ratio reached 410 ± 12% at pH 9.18 and 275 ± 9% at pH 4.01, evidencing pronounced pH responsiveness. Mechanical strength measured 0.82 ± 0.03 MPa with elongation of 42 ± 2%, ensuring flexibility for skin application. The temperature-controlled release of methylene blue achieved 78 ± 4% at 40 °C after 24 h, consistent with diffusion-limited transport. This gellan–chitosan–agar hydrogel network crosslinked with glutaraldehyde represents a stable, pH-responsive, and biocompatible platform suitable for wound care and transdermal drug delivery.

Article activity feed