Reprocessing of Simulated Industrial PLA Waste for Food Contact Applications

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study explores reusing discarded industrial polylactic acid (PLA), such as defective parts, scraps and burrs, for food contact applications. Reprocessing of PLA (PLA-RP) was simulated via melt extrusion, and the obtained pellets were characterized in terms of viscosity average molecular weight (Mv), melt flow index (MFI), the presence of non-intentionally added substances (NIASs) and the absence of metals to ensure that no substances exceeded the specific migration limits (SMLs). A slight reduction in the Mv, accompanied by an increase in the MFI, was observed in PLA-RP. In virgin PLA, fewer compounds were detected, likely related to residual additives. A higher variety and concentration of volatile and non-listed compounds were observed in reprocessed PLA (PLA-RP), with three exceeding their assigned Cramer class thresholds, requiring further evaluation. Most identified substances were typically linked to thermal degradation or potential additives for reprocessing. In both the virgin and reprocessed materials, all substances with SMLs remained below applicable thresholds, including trace metals. The PLA-RP was further processed into films by means of a compression moulding process. The structure, mechanical behaviour, thermal stability and water vapor transmission rate were comparable to those of virgin PLA, indicating no significant changes. The overall migration level tested in a fatty food simulant remained below regulatory limits. The materials fully disintegrated under laboratory-scale composting conditions in less than 3 weeks. Thus, reprocessed PLA shows great potential as a non-migrating material of interest in the sustainable food packaging field.

Article activity feed