Determination of Time and Concentration Conditions Affecting Polylactic Acid (Pla) Production

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Polylactic acid (PLA) is a renewable biopolymer that has attracted considerable interest due to its ability to replace petroleum-based synthetic polymers, thereby offering a more sustainable alternative to global environmental concerns. This study focused on evaluating the effect of catalyst concentration and reaction time on the efficiency of PLA synthesis via the Ring-Opening Polymerization (ROP) technique. The process involved a lactic acid esterification stage (using 88% lactic acid) to obtain lactide, employing 40% and 60% (v/v) sulfuric acid concentrations, followed by polymerization at various reaction times (10, 15, 20, and 30 min). Analysis of variance (ANOVA) results revealed that the 40% catalyst concentration had a statistically significant effect on polymer yield (p = 0.032), whereas reaction time showed no statistical significance (p = 0.196), although the highest yields were recorded at 10 and 15 min. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of the characteristic functional groups of PLA, and Differential Scanning Calorimetry (DSC) revealed a semi-crystalline structure with a high melting temperature, indicating good thermal stability. These results validate the viability of PLA as a functional and sustainable biopolymer.

Article activity feed