The Stability Evaluation of Ceria Slurry Using Polymer Dispersants with Varying Contents for Chemical Mechanical Polishing Process

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries. Among them, the D7 sample exhibited smaller particle sizes compared to commercial ceria slurry, which was attributed to the influence of the carboxyl groups (-COOH) of the polyacrylic acid polymer coating the ceria particles. It is believed that the polymer dispersant more effectively adsorbs onto the particle surfaces, increasing electrostatic repulsion between particles and thereby reducing particle size. Furthermore, the stability of the prepared slurry was evaluated under extreme conditions over three months at 25 °C (both open and closed conditions), 4 °C, and 60 °C. The D7 slurry remained stable with no significant changes observed. In addition, the prepared D7 ceria slurry exhibited a slightly higher removal rate (RR) and better uniformity, which can be attributed to the smaller particle sizes of the ceria nanoparticles compared to those in the commercial slurry. This suggests that the colloidal stability of the D7 ceria slurry is superior to that of the commercial ceria slurry.

Article activity feed