Functional Insights into SlNPF, SlNRT2, and SlAMT Gene Families in Tomato: Leaf Metabolic Performance Controls Root-to-Shoot Nitrogen Partitioning

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Low Nitrogen Use Efficiency (NUE) remains a critical agricultural challenge, as an estimated 50–70% of applied nitrogen (N) is lost, resulting in negative environmental impacts and reduced crop production. To elucidate molecular mechanism controlling NUE in tomato (Solanum lycopersicum), we conducted a comprehensive genomic, transcriptomic, and functional analysis of the NPF, NRT2, and AMT transporter families under high-N commercial supply conditions. Our integrated analysis identified a shoot-to-root signaling mechanism where the plant’s metabolic performance systematically regulates N transport capacity. Under N sufficiency, the shoot exhibited reduced N assimilation, evidenced by NO3− accumulation (increased by 55.7%) and reduced Nitrate Reductase (NR) and Glutamine Synthetase (GS) activities (54.0% and 43.2% reduction, respectively), which correlated with a 42.3% reduction in chlorophyll synthesis capacity. This reduction in metabolic demand systematically triggered the downregulation of the key long-distance SlNPF transporters, SlNPF2.13 and SlNPF7.3, restricting N translocation and promoting significant root N accumulation (increased by 41.8%). Our data established that the leaf metabolic state is the systemic regulator of N transport and identified SlNPF2.13 and SlNPF7.3 as pivotal molecular checkpoints. These findings indicate that the manipulation of these transporters could serve as a valuable tool in molecular breeding programs to significantly enhance NUE in commercial tomato varieties.

Article activity feed