Polyphosphate Polymerase—A Key Enzyme for the Phosphorus Economy of the Microalgal Cell and the Sustainable Usage of This Nutrient

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Phosphorus is a key macronutrient central to the processes of energy and information storage and exchange in the cell. Single-celled photosynthetic organisms, including microalgae, accumulate intracellular reserves of phosphorus (mostly in the form of polyphosphate) essential for the maintenance of cell homeostasis during fluctuations of external phosphorus availability. The polyphosphate reserves in microalgal cells are formed by polyphosphate polymerases—a ubiquitous enzyme family represented mainly by prokaryotic (PPK-type, typical of prokaryotes, e.g., cyanobacteria) and VTC-type polyphosphate polymerases harbored by eukaryotic microalgae, although certain species possess both PPK and VTC types of the enzyme. This enzyme is important for the environmental fitness of microalgae dwelling in diverse habitats, as well as for the efficiency of microalgae-based systems for the biocapture of phosphate from waste streams and for upcycling this valuable nutrient to agricultural ecosystems via biofertilizer from microalgal biomass. This review summarizes the recent progress in the field of structure, regulation, and functioning of VTC in microalgae. In conclusion, biotechnological implications and perspectives of VTC as a target of microalgal cell engineering and bioprocess design for improved phosphate bioremoval efficiency and culture robustness are considered.

Article activity feed