Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Drought severely impacts crop yields, especially wheat. Antitranspirants, which reduce water loss, have been shown to improve crop yield under drought, possibly by increasing pollen viability. To understand the mechanisms, transcriptomic responses were studied in early meiotic wheat anthers extracted from polytunnel-grown plants: well-watered, droughted unsprayed, and droughted plants treated with antitranspirants. Film (Vapor Gard (VG), di-1-p-menthene) and metabolic (Abscisic Acid (ABA), 20% S-ABA) antitranspirants were applied at the flag leaf stage (GS39). Well-watered (WW) plant anthers had more upregulated genes (626 genes) than downregulated ones (226 genes) when compared to droughted unsprayed ones. Most of the differentially expressed genes (DEGs) were transcriptionally downregulated (3959 genes) in droughted, treated-plant anthers (ABA and VG) compared with unsprayed (US), and the number of genes with upregulated expression was lower (830 genes). VG-treated plant anthers had more downregulated genes (3325 genes) than ABA-treated ones (634 genes). Carbohydrate or sugar metabolism and related processes were affected in antitranspirant-treated plant anthers with significant downregulation of genes compared to droughted unsprayed ones; in contrast, these processes were upregulated in well-watered anthers, suggesting broad differences in the transcriptional response. However, antitranspirants did not significantly affect pollen viability or yield in treated plants compared to unsprayed plants, suggesting that anthers are more sensitive at the transcriptomic level than subsequent physiological processes determining yield.