A Gaussian Model for the Time Development of the Sars-Cov-2 Corona Pandemic Disease. Predictions for Germany Made on 30 March 2020

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

For Germany, it is predicted that the first wave of the corona pandemic disease reaches its maximum of new infections on 11 April 2020 − 3.4 + 5.4 days with 90% confidence. With a delay of about 7 days the maximum demand on breathing machines in hospitals occurs on 18 April 2020 − 3.4 + 5.4 days. The first pandemic wave ends in Germany end of May 2020. The predictions are based on the assumption of a Gaussian time evolution well justified by the central limit theorem of statistics. The width and the maximum time and thus the duration of this Gaussian distribution are determined from a statistical χ 2 -fit to the observed doubling times before 28 March 2020.

Article activity feed

  1. SciScore for 10.1101/2020.03.31.20048942: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.