Convolutional Neural Network-Based Fiber Optic Channel Emulator and Its Application to Fiber-Longitudinal Power Profile Estimation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper proposes an accuracy enhancement method for fiber-longitudinal power profile estimation (PPE) based on convolutional neural networks (CNN). Two types of CNNs are designed. The first network treats different polarization streams identically and is denoted as CNN. The second network considers the difference between the contributions of different polarization streams to the nonlinear phase shift and is denoted as enhanced CNN (ECNN). The numerical simulation results confirm the effectiveness of the method for a 64 Gbaud/s quadrature phase-shift keying (QPSK) polarization-division-multiplexed (PDM) coherent optical communication system with a fiber length of 320 km. The effects of finite impulse response (FIR) filter length, power into the fiber, and polarization mode dispersion on the PPE accuracy are examined. Finally, the results of the proposed method are monitored in the presence of several simultaneous power attenuation anomalies in the fiber optic link. It is found that the accuracy of the PPE substantially improves after using the proposed method, achieving a relative gain of up to 71%. When the modulation format is changed from QPSK to 16-ary quadrature amplitude modulation (16-QAM), and the fiber length is increased from 360 km to 480 km, the proposed method is still effective. This work provides a feasible solution for implementing fiber-longitudinal PPE, enabling significantly improved estimation accuracy in practical applications.