A Framework for Iterative Phase Retrieval Technique Integration into Atmospheric Adaptive Optics—Part II: High Resolution Wavefront Control in Strong Scintillations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this paper, we introduce atmospheric adaptive optics (AO) system architectures that utilize scintillation-resistant wavefront sensors based on iterative phase retrieval (IPR) techniques (described in detail in Part I) for closed-loop mitigation of atmospheric turbulence-induced wavefront aberrations in strong intensity scintillation conditions. The objective is to provide a framework (mathematical and numerical models, performance metrics, control algorithms, and wave-optics modeling and simulation results) for the potential integration of IPR-based wavefront sensing techniques into the following major atmospheric optics system types: directed energy laser beam projection, remote laser power delivery (remote power beaming), and free-space optical communications. Theoretical analysis and numerical simulation results demonstrate that the proposed closed-loop AO system architectures and control algorithms can be uniquely applicable for addressing one of the most challenging AO problems of turbulence effects mitigation in the presence of strong-intensity scintillations.

Article activity feed