Binder-Free Fe2O3/MWCNT/Al Electrodes for Supercapacitors

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work presents a method for preparing an Fe2O3/MWCNT/Al composite electrode without the use of a binder. Synthesizing the composite material directly on conductive substrates allows one to obtain ready-made supercapacitor electrodes characterized by high values of specific capacity, as well as resistance to numerous charge/discharge cycles. Using an array of multi-walled carbon nanotubes (MWCNTs) as a conductive base for the synthesis of iron oxide allows for the production of a composite material that combines the positive properties of both materials. The Fe2O3/MWCNT/Al composite was formed using electrochemical oxidation of the MWCNT/Al material in a mixture of 0.1 M aqueous solution of Fe(NH4)2(SO4)2 (iron ammonium sulfate) and 0.08 M CH3COONa (sodium acetate) in a 1:1 ratio. The proposed approaches to fabricating composite electrodes provide excellent performance characteristics, namely high cyclic stability and fast response time. For the first time, an Fe2O3/MWCNT/Al composite was obtained using electrochemical oxidation of Fe2+ on the surface of MWCNTs grown directly on aluminum foil. The specific capacitance of the obtained composite material reaches 175 F/g at a scanning rate of 100 mV/s. The capacity loss during cyclic measurements does not exceed 25% after 10,000 charge/discharge cycles.

Article activity feed