Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications.

Article activity feed