Overview of Recent Advances in Rare-Earth High-Entropy Oxides as Multifunctional Materials for Next-Gen Technology Applications

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Rare-earth high-entropy oxides are a new promising class of multifunctional materials characterized by their ability to stabilize complex, multi-cationic compositions into single-phase structures through configurational entropy. This feature enables fine-tuning structural properties such as oxygen vacancies, lattice distortions, and defect chemistry, making them promising for advanced technological applications. While initial research primarily focused on their catalytic performance in energy and environmental applications, recent research demonstrated their potential in optoelectronics, photoluminescent materials, and aerospace technologies. Progress in synthesis techniques has provided control over particle morphology, composition, and defect engineering, enhancing their electronic, thermal, and mechanical properties. Rare-earth high-entropy oxides exhibit tunable bandgaps, exceptional thermal stability, and superior resistance to phase degradation, which positions them as next-generation materials. Despite these advances, challenges remain in scaling up production, optimizing compositions for specific applications, and understanding the fundamental mechanisms governing their multifunctionality. This review provides a comprehensive analysis of the recent developments in rare-earth high-entropy oxides as relatively new and still underrated material of the future.

Article activity feed