Exploring High PT Experimental Charges Through the Lens of Phase Maps
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
High pressure and temperature (PT) experimental charges are valuable systems composed of minerals, often with quenched melt and/or fluid, synthesized to inform petrological processes deep within Earth. We explored the utility of phase mapping for the analysis of 5 GPa partial melting experiments of peridotite. We further developed an open-source software workflow to generate phase maps, which is scanning electron microscope (SEM) instrument agnostic. Phase maps were constructed offline, combining high-quality back-scattered electron images and selected element maps, and compared and verified with maps obtained with commercial automated mineralogy software. One sub-solidus assemblage, one charge containing a small percentage of melt, and a melting experiment that displayed reactions (caused by a strong thermal gradient) were analyzed. For the sub-solidus experiment, the phase map returned an accurate modal mineralogy. For the quenched melt experiments, the phase map located low-abundance phases and identified the best-suited targets for chemical analysis. Using modal mineralogy of sub-regions on maps and mutual neighboring relationships, the phase maps helped to establish equilibrium conditions and verify melting reactions inferred from mass balance. We propose phase maps as valuable tools for documenting high PT charges, particularly for layered reaction experiments. We conclude with a set of recommended instrument settings for high-quality phase maps on small experimental charges.