Transcriptomic Insights into Caffeine Degradation Pathways in Desarmillaria tabescens
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Caffeine contamination threatens ecosystems and human health, with conventional remediation methods facing limitations. This study identified Desarmillaria tabescens as a potent caffeine-degrading fungus, achieving efficient degradation under optimized conditions (malt extract medium, 900 mg/L caffeine, 28 °C, pH 8). HPLC analysis revealed key intermediates such as theobromine and 3-methylxanthine, confirming a branched catabolic pathway involving N-demethylation and C8 oxidation. Transcriptomic profiling identified nine consistently upregulated cytochrome P450 genes as core catalytic components, with three adjacent to a polyketide biosynthetic gene cluster potentially supporting oxidative reactions. A three-phase “Stress-Degradation-Homeostasis” regulatory model was proposed, coordinating detoxification, energy metabolism, and secondary metabolism. These findings advance understanding of fungal caffeine degradation mechanisms and provide valuable genetic resources for bioremediation and low-caffeine product development.