Diet Quality Modulates Gut Microbiota Structure in Blastocystis-Colonised Individuals from Two Distinct Cohorts with Contrasting Sociodemographic Profiles
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Diet and gut microbiota are significant determinants of host health, but how dietary quality modulates gut microbiota in Blastocystis-colonised individuals remains underexplored. We studied two contrasting cohorts: university students (FACSA, n = 46) and institutionalised children with their caregivers (PAVILA, n = 37), representing distinct dietary and sociodemographic contexts. Eight participants from each cohort tested positive for Blastocystis; however, two PAVILA samples could not be sequenced, resulting in a final microbiota subcohort of 14 individuals (FACSA n = 8, PAVILA n = 6). Dietary quality was assessed using the Healthy Eating Index-2020 (HEI-2020), and faecal microbiota was characterised through 16S rRNA sequencing. Alpha and beta diversity were analysed, and genus-level transformed data were further evaluated using permutational multivariate analysis of variance (PERMANOVA), principal coordinates analysis (PCoA), and distance-based redundancy analysis (db-RDA). The FACSA cohort exhibited higher microbial richness and diversity (Shannon and Simpson indexes, p < 0.01) compared to PAVILA, with marked differences in microbial composition (PERMANOVA R2 = 0.39, p = 0.002). Total diet quality correlated with microbial structure (R2 = 0.26, p = 0.016), with protein (R2 = 0.23, p = 0.017) and vegetable components (R2 = 0.17, p = 0.044) as primary contributors. Multivariate analysis showed that higher protein and vegetable intakes were associated with genera such as Sellimonas, Murimonas, Alistipes, and Desulfovibrio (FACSA group). In contrast, Hydrogenoanaerobacterium, V9D2013_group, and Haemophilus were linked to lower-quality diets (PAVILA group). Our results indicate that diet quality significantly influences gut microbiota composition in individuals colonised by Blastocystis, underscoring its potential as a target for nutritional interventions in vulnerable populations.