Physiological, Biochemical, and Genetic Reactions of Winter Wheat to Drought Under the Influence of Plant Growth Promoting Microorganisms and Calcium
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Improving wheat drought stress tolerance is a critical and challenging task, and more research is necessary since many parts of the world depend on this crop for food and feed. Our current work is focused on the influence of probiotic microorganisms in combination with calcium salts on the physiological and biochemical metabolic pathways that wheat uses when exposed to drought stress and on the analysis of gene expression levels that contribute to wheat drought tolerance. The research was conducted in the laboratory under controlled conditions, simulating a prolonged drought. Seedlings were treated with different microorganisms (Bacillus subtilis, Lactobacillus paracasei, and some yeast) in 105 CFU/mL concentrations for seed priming and later in the same concentration for seedling spraying. A total of 70 g/m2 CaCO3 or 100 g/m2 CaCl2 was added to the soil before sowing the seeds. Almost all tested treatments improved plant growth and positively affected prolonged drought resistance in winter wheat. Bacillus subtilis, in combination with calcium salts, had the greatest effect on maintaining the relative leaf water content (RWC). The proline, malondialdehyde (MDA), and H2O2 tests proved the significant positive impact of the treatments on the plant’s response at the biochemical level, with growth parameters close to those of irrigated plants, for example, the ones treated with B. subtilis alone or with Ca salts had the lowest H2O2 content, 0.86–0.96 μmol g−1 FW, compared to 3.85 μmol g−1 FW for the Control, along with lower levels of drought-induced gene expression. All the presented results show statistically significant differences (p < 0.05). This study showed that tested microorganisms in combination with calcium salts can activate plants’ defense reactions in response to drought. The practical significance of this study is that these ecological measures can be useful under field conditions.