Investigating Experimental and Computational Fluid Dynamics of 3D-Printed TPMS and Lattice Porous Structures
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with 16 μL water droplets dropping from 30 mm at 0.77 m/s. Results showed variable contact angles, with Isotruss and Octet having higher angles, while Diamond faced measurement challenges due to surface roughness. Numerical simulations of TPMS-Gyroid of 2 mm3 unit cells validated the experimental results, and Diamond, Octet, and Isotruss structures were simulated. Capillary performance was assessed through deionized (DI) water weight–time (w-t) measurements, identifying that the TPMS-Gyroid structure performed adequately. Structures with 4 mm3 unit cells had low capillary performance, excluding them from permeability testing, whereas smaller 2 mm3 structures demonstrated capillary effects but had printability and cleaning issues. Permeability results indicated that Octet performed best, followed by Isotruss, Diamond, and TPMS-Gyroid. Findings emphasize unit cell size, beam thickness, and droplet positioning as key factors in optimizing fluid dynamics for cooling, filtration, and fluid management.