Optimising (Al,Ga) (As,Bi) Quantum Well Laser Structures for Reflectance Mode Pulse Oximetry
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We explore quantum well laser diodes for applications in pulse oximetry based on two material systems, namely, classical AlGaAs and a rather exotic GaAsBi, with lasing at around 800 nm and 1100 nm, respectively. These spectral regions and material families were selected due to their closely matched effective penetration depths into soft tissue. An improved design of the band structure of device active areas was tested on both material systems, yielding enhancement of the two main parameters, namely, output power and threshold current. A maximum emission power of the AlGaAs laser diode was registered at 4.9 mW (I = 60 mA, λ = 801 nm). For the GaAsBi-based devices, the target emission of 1106 nm was measured in pulsed mode with a peak output power of 9.4 mW (I = 3 A). The most optimized structure was based on three GaAsBi quantum wells surrounded by parabolically graded AlGaAs barriers. This structure was capable of 130 mW peak power (I = 2 A, λ = 1025 nm) along with a more than tenfold decrease in threshold current to 250 mA compared to a classical rectangular quantum well active region.