Bayesian Measurement of Diagnostic Accuracy of the RT-PCR Test for COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) targeting select genes of the SARS-CoV-2 RNA has been the main diagnostic tool in the global response to the COVID-19 pandemic. It took several months after the development of these molecular tests to assess their diagnostic performance in the population. The objective of this study is to demonstrate that it was possible to measure the diagnostic accuracy of the RT-PCR test at an early stage of the pandemic despite the absence of a gold standard. The study design is a secondary analysis of published data on 1014 patients in Wuhan, China, of whom 59.3% tested positive for COVID-19 in RT-PCR tests and 87.6% tested positive in chest computerized tomography (CT) exams. Previously ignored expert opinions in the form of verbal probability classifications of patients with conflicting test results have been utilized here to derive the informative prior distribution of the infected proportion. A Bayesian implementation of the Dawid-Skene model, typically used in the context of crowd-sourced data, was used to reconstruct the sensitivity and specificity of the diagnostic tests without the need for specifying a gold standard. The sensitivity of the RT-PCR diagnostic test developed by China CDC was estimated to be 0.707 (95% Cr I: 0.664, 0.753), while the specificity was 0.861 (95% Cr I: 0.781, 0.956). In contrast, chest CT was found to have high sensitivity (95% Cr I: 0.969, 1.000) but low specificity (95% Cr I: 0.477, 0.742). This estimate is similar to estimates that were found later in studies designed specifically for measuring the diagnostic performance of the RT-PCR test. The developed methods could be applied to assess diagnostic accuracy of new variants of SARS-CoV-2 in the future.
Article activity feed
-
-
-
SciScore for 10.1101/2020.04.24.20078949: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Statistical analysis was done using the R programming language [23] in the RStudio software environment [25]. RStudiosuggested: (RStudio, RRID:SCR_000432)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:The Bayesian computation flowed naturally from there on, with only a minor hurdle to overcome in marginalizing over the discrete set of true diagnoses to get past a …
SciScore for 10.1101/2020.04.24.20078949: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources Statistical analysis was done using the R programming language [23] in the RStudio software environment [25]. RStudiosuggested: (RStudio, RRID:SCR_000432)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:The Bayesian computation flowed naturally from there on, with only a minor hurdle to overcome in marginalizing over the discrete set of true diagnoses to get past a limitation of the Hamiltonian sampling in RStan. Among the many limitations of this study, the primary one is that the estimated sensitivity and specificity apply to the particular version of the RT-PCR test that was urgently created by China CDC [34] and that was being used in Wuhan, China, during January and February, 2020. An important methodological limitation of the study is that it is a retrospective study based on probabilistic knowledge of diagnostic errors and there were no studies available that were based on using a better gold standard test than RT-PCR that could act as a reference for comparison.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-