Hybrid Physics-Informed Neural Networks Integrating Multi-Relaxation-Time Lattice Boltzmann Method for Forward and Inverse Flow Problems

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Although physics-informed neural networks (PINNs) offer a novel, mesh-free paradigm for computational fluid dynamics (CFD), existing models often suffer from poor stability and insufficient accuracy, particularly when dealing with complex flows at high Reynolds numbers. To address this limitation, we propose, for the first time, a novel hybrid architecture, PINN-MRT, which integrates the multi-relaxation-time lattice Boltzmann method (MRT-LBM) with PINNs. The model embeds the MRT-LBM evolution equation as a physical constraint within the loss function and employs a unique dual-network architecture to separately predict macroscopic conserved variables and non-equilibrium distribution functions, enabling both forward and inverse problem-solving through a composite loss function. Benchmark tests on the lid-driven cavity flow demonstrate the superior performance of PINN-MRT. In inverse problems, it remains stable at Reynolds numbers up to 5000 with parameter inversion errors below 15%, whereas standard PINN and single-relaxation-time PINN-LBM models fail at a Reynolds number of 1000 with errors exceeding 80%. In purely physics-driven forward problems, PINN-MRT also provides stable solutions at a Reynolds number of 400, while the other models completely collapse. This study confirms that incorporating mesoscopic kinetic theory into PINNs effectively overcomes the stability bottlenecks of conventional approaches, providing a more robust and accurate architecture for CFD and paving the way for solving more challenging fluid dynamics problems.

Article activity feed