Adaptive Backstepping Control of an Unmanned Aerial Manipulator

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper presents an adaptive backstepping feedback control design for an unmanned aerial manipulator (UAM) that consists of an unmanned aerial vehicle (UAV) with an attached robotic arm. The effect of the arm is treated as a disturbance force and torque, as well as a parametric uncertainty in inertial parameters. The proposed adaptive law guarantees disturbance rejection assuming constant parameters and disturbances. In practice, this assumption includes the case of fixed-arm configurations. To validate the control design, numerical simulations are performed, including a realistic pick-and-place scenario.

Article activity feed