Influence of Wood Chemical Composition on Liquefaction Efficiency and Polyurethane Foam Properties: A Study of Red Angico and Mahogany

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Biomass liquefaction is a thermochemical process that converts lignocellulosic materials into reactive liquid intermediates, enabling the production of bio-based polyols as a sustainable alternative to petroleum-derived chemicals. This study investigates the liquefaction of two lignocellulosic biomasses, Red Angico (Anadenanthera colubrina) and Mahogany (Swietenia macrophylla), using a glycerol–ethylene glycol polyalcohol system, chosen for its renewable origin and high solvating efficiency. The resulting polyols were used to produce polyurethane (PU) foams, and their properties were evaluated in relation to biomass composition. The chemical composition of each biomass significantly influenced its liquefaction behavior and polyol characteristics. Mahogany achieved higher liquefaction efficiency, whereas Red Angico polyols generated PU foams with superior mechanical performance, highlighting the influence of species-specific chemistry. Water content and isocyanate index were found to modulate foam structure and compressive strength. This work demonstrates how tailored liquefaction strategies using polyalcohol systems can optimize bio-based PU foam properties, providing a sustainable route for high-performance polymer materials.

Article activity feed