Optimal CeO2 Doping for Synergistically Enhanced Mechanical, Tribological, and Thermal Properties in Zirconia Ceramics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

CeO2 doping is a well-established strategy for enhancing the properties of zirconia (ZrO2) ceramics, with the prior literature indicating an optimal doping range of around 10–15 wt.% for specific attributes. Building upon this foundation, this study provides a systematic investigation into the concurrent evolution of mechanical, tribological, and thermophysical properties across a broad compositional spectrum (0–20 wt.% CeO2). The primary novelty lies in the holistic correlation of these often separately examined properties, revealing their interdependent trade-offs governed by microstructural development. The 15Ce-ZrO2 composition, consistent with the established optimal range, achieved a synergistic balance: hardness increased by 27.6% to 310 HV1, the friction coefficient was minimized to 0.205, and the wear rate was reduced to 1.81 × 10−3 mm3/(N m). Thermally, it exhibited a 72.2% reduction in the thermal expansion coefficient magnitude at 1200 °C and a low thermal conductivity of 0.612 W/(m·K). The enhancement mechanisms are consistent with solid solution strengthening, grain refinement, and likely enhanced phonon scattering, potentially from point defects such as oxygen vacancies commonly associated with aliovalent doping in oxide ceramics, while performance degradation beyond 15 wt.% is linked to CeO2 agglomeration and duplex microstructure formation. This work provides a relatively comprehensive insight into the dataset and mechanism, which is conducive to the fine design of multifunctional ZrO2 bulk ceramics. It is not limited to determining the optimal doping level, but also aims to clarify the comprehensive performance map, providing reference significance for the development of advanced ceramic materials with synergistically optimized hardness, wear resistance, and thermal properties.

Article activity feed