Influence of Processing and Mix Design Factors on the Water Demand and Strength of Concrete with Recycled Concrete Fines
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The study examines how crushed and sieved concrete rubble—recycled concrete fines (RCF) and the ways of their reactivity activation—affect processing, mix design, and properties of cement-based concrete. Based on the relationship to mass loss during crushing, the compressive strength of the concrete fines processed from rubble was initially determined. The morphology of the particles as well as the chemical and mineralogical composition of RCF were ascertained using XRD, SEM, and EDS characterization tests. Certain RCF surface area (fineness) and type of treatment are associated with specific pozzolanic activity of RCF. Using the approaches of factorial experimental design, tests were planned by varying six factors: RCF specific surface area, RCF content, thermal treatment temperature of RCF, cement content, superplasticizer dosage, and hardening accelerator (Na2SiF6) content in concrete containing RCF. Statistical processing of the research results data provided adequate polynomial regression models for the water demand of the concrete and the compressive strength of hardened concrete at 7 and 28 days. The models were quantitatively analyzed to evaluate the influence of the studied factors on the output parameters and to rank them according to their impact. The greatest increase in water demand was attributed to cement content change, in particular above 400 kg/m3, and to RCF content. It was established that the addition of a superplasticizer compensated for additional water demand and the reduction in compressive strength caused by partial replacement of cement with RCF. Increasing the specific surface area of RCF up to a specific surface area of 250 m2/kg improved compressive strength but further grinding caused strength reduction due to increased water demand. The positive effect of the superplasticizer on RCF-modified concrete strength was enhanced by the introduction of a chemical activator (hardening accelerator) and thermal treatment of RCF. The obtained models of water demand and compressive strength of concrete with RCF can be applied for the optimization of the mix design. This paper proposes a method of mix design and provides an example of calculation.