Computational Analysis of Thermal Performance of Heat Sinks with Foam Structures

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ensuring efficient heat transfer to maintain optimal system performance is crucial in modern electronics owing to the rise of artificial intelligence. In the last few decades, scholars have explored various strategies for enhancing electronic device thermal management, focusing on the effects of fin shape, dimension, and spacing on heat transfer efficiency. Recent advancements in additive manufacturing have enabled fabrication of complex geometries, such as triply periodic minimal surfaces (TPMSs), which represent promising alternatives to conventional designs. This study presents a comparative analysis of the thermal performance and fluid flow characteristics of two foam TPMS-based (gyroid and primitive) heat sinks with wavy fins made using aluminum foam. COMSOL Multiphysics version 5.1, employed along with the implemented finite element method, was used to simulate convective heat transfer, pressure drop, the Nusselt number, and thermal performance at different fluid velocities along the length of a channel. The foam structure was heated by a copper plate, and the Nusselt number was evaluated over porosity levels from 0.1 to 0.9. A porosity between 0.5 and 0.7 offers the best balance of cooling performance and pumping power. Foam TPMS heat sinks, particularly those with a gyroid structure, provide enhanced thermal dissipation owing to their high surface area-to-volume ratio and interconnected geometry. Our findings confirm that TPMS heat sinks have promising potential for use as alternatives to conventional wavy designs for advanced thermal management applications.

Article activity feed