Effects of Forging Temperature and Micro-Arc Coatings on the Static/Stress Corrosion Resistance of AZ80 Magnesium Alloy
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
To enhance the surface protection of exposed moving parts made from magnesium alloys, this study focuses on developing high-performance micro-arc composite (MCC) coatings on AZ80 wrought magnesium alloy substrate. AZ80 alloys were fabricated through forging at different temperatures (250 °C, 350 °C, and 450 °C) to investigate the influence of thermal deformation on substrate properties. Subsequently, micro-arc oxidation (MAO) coatings and MCC coatings were applied to the forged alloys. Comprehensive analyses—including microstructural characterization, salt spray corrosion tests, and stress corrosion cracking (SCC) evaluations—were conducted under both static and stress conditions. Among the forging temperatures, 250 °C produced substrates with refined grains and a favorable distribution of β-Mg17Al12 precipitates, resulting in improved baseline corrosion resistance. MAO coatings offered moderate protection, primarily delaying corrosion initiation and crack propagation under stress environments. Building upon this foundation, MCC coatings—fabricated by electrostatic spraying to form an inner-embedded and outer-wrapped structure over the MAO layer—demonstrated significantly superior protective performance. Under both static and stress corrosion scenarios, the MCC coatings effectively suppressed SCC initiation and progression, highlighting their potential for robust surface protection in demanding service environments.